

Are you curious about the air you breathe, what's in it, and how it's protected?

Join us at our free monthly workshops and get an in-depth look at how we keep the air clean.

FEBRUARY 18 JULY 15

MARCH 18 AUGUST 19

APRIL 15 SEPTEMBER 16

MAY 20 OCTOBER 21

JUNE 17 NOVEMBER 18

6 p.m-7:30 p.m. | Louisville Free Public Library, 301 York St.

For more info, go to www.louisvilleky.gov/APCD (502) 574-6000

The APCD Workshop Series seeks to:

- Increase the community's understanding of Louisville's air and of APCD's many functions
- EMPOWER citizens
- Provide a more informal forum for dialogue, Q&A and feedback
- Continue with community engagement efforts

Today's workshop seeks to:

- 1. Review the current NAAQS for ozone in Louisville.
- 2. Provide an overview of results from the Ozone Formation Study and discuss next steps.
- 3. Introduce ACPD's upcoming efforts to develop strategies that reduce ozone and find co-benefits that reduce other pollutants.
- Obtain ideas/suggestions/feedback from the community on how to best meet the NAAQS for ozone.

Remember...

- There are NO silly questions
- Public Participation =

- Interactive/informal workshop
 - Ask questions as they come to mind
 - Feedback? Email <u>Clearingtheair@louisvilleky.gov</u>

Ground-level Ozone vs. Stratospheric Ozone

- Ground-level Ozone
 - "Bad" ozone
 - Colorless
 - Highly irritating gas
 - Forms just above the earth's surface
 - Secondary pollutant
 - Created via a chemical reaction

- Stratospheric Ozone
 - "Good" ozone
 - Stratospheric layer protects from the sun's ultraviolet rays

How is ground-level ozone formed?

Ground-level Ozone: $NO_x + VOCs + Sunlight = O_3$

Meteorology

- Assists with the chemical reaction that creates "bad" ozone (i.e. sunlight)
- Warm, sunny, dry and stagnant days can create more ground-level ozone
- Can move through a region slowly and accumulate in areas downwind of sources

Chemistry

Health/Environmental Effects

Health	Environment
 Limits outside activity for sensitive and vulnerable populations (e.g. children, elderly) 	 Interferes with sensitive plants/vegetations ability to survive
Triggers asthma attacks (if asthmatic)	 Reduces forest growth
 Impacts the ability to fight other infections of the lungs (e.g. colds) 	 Transforms the quality of a defined habitat

Current NAAQS Status

Pollutant	Standard	Averaging Time	Attainment Status	
Carbon Monoxide	9 ppm	8-hour	Attainment	
	35 ppm	1-hour	Attainment	
Lead	$0.15 \mu g/m^3$	Rolling 3-month Average	Attainment	
Nitrogen Dioxide	53 ppb	Annual Average	Attainment	
	100 ppb	1-hour	Attainment	
Particulate Matter (PM10)	150 μg/m³	24-hour	Attainment	
Doution late Matter (DM2 F)	12.0 μg/m³	Annual Average	Attainment	
Particulate Matter (PM2.5)	35 μg/m ³	35 μg/m ³ 24-hour	24-hour	Attainment
Ozone	0.070 ppm	8-hour	Nonattainment	
Sulfur Dioxide	75 ppb	1-hour	Partial County Nonattainment	

Ozone Trend

Ozone Formation

2014 NEI

Louisville NO_X Point Sources - 2014

Louisville NO_X Point Sources - 2017

Sources

Monitoring and Communicating Ozone Air Quality Data

 EPA National Ambient Air Quality Standards (NAAQS)

APCD air monitoring network

Air Quality Index (AQI)

Addressing Ozone Pollution

Addressing Ozone Pollution

- Ozone Formation Study
- U.S. EPA/APCD Multi-Pollutant
 Risk-Based AQ Management Strategy Project
- SIP Planning
- LMG Initiatives

- KAIRE Idle Free
- Grow More Mow Less
- Lawn Care for Cleaner Air
- Energy Efficiency

Ozone Formation

NO_x + VOCs + Sunlight

Ozone Formation

Ozone Projections

SIP Planning

Transportation & General Conformity

Aug. 3, 2019

Nonattainment NSR Rule Due & Attainment deadline

Aug. 3, 2021

Additional Requirements

2021-2041

Aug. 3, 2020

Emissions Inventory & Emissions Statements Rule Due

2021-2022

Redesignation or Reclassification

What is the Ozone Formation Study?

A modeling approach to help APCD determine if elevated ozone in the Louisville Non-Attainment Area is NOX-limited or **VOC-limited**

Louisville Metro Air Pollution Control District 701 West Ormsby Avenue, Suite 303 Ramboll US Corporation 7250 Redwood Blvd., Suite 105 Novato, California 94945 October 2019 **Ozone Formation Study: Model** Performance Evaluation and NOx/VOC Sensitivity Final RAMBOLL Bright ideas. Sustainable change

Ozone Formation Study

Goal	Outcomes
 Refine understanding for the	 Comprehensive inventory of
regional drivers of ozone	compounds contributing to the
formation to make strategic	formation of ozone Refined understanding of Ozone
policy decisions	sensitivity to NOx/VOC reductions

Modeling

- Hourly modeling on 4km grid
- Base Case
- 25% NO_x Reduction
- 25% VOC Reduction

NO_X Sensitivity

Average MD8A Ozone Concentration for Top 10 Highest Observed MD8A Days

Average MD8A Ozone Concentration for Top 10 Highest Observed MD8A Days

NO_X Sensitivity

Average MD8A Ozone Difference for Top 10 Highest Observed MD8A Days

NO_X Sensitivity

Average MD8A Ozone Difference for Top 10 Highest Observed MD8A Days

VOC Sensitivity

Average MD8A Ozone Concentration for Top 10 Highest Observed MD8A Days

Average MD8A Ozone Concentration for Top 10 Highest Observed MD8A Days

VOC Sensitivity

Average MD8A Ozone Difference for Top 10 Highest Observed MD8A Days

VOC Sensitivity

Average MD8A Ozone Difference for Top 10 Highest Observed MD8A Days

Comparison

Multi-Pollutant Risk-Based AQ **Management Strategy Project**

Goal(s) **Outcomes** Evaluate and prioritize control strategies Prioritized emission to reduce ozone and come into attainment reduction strategies Quantified health outcome with NAAQS Explore co-benefits of ozone reduction improvements and associated benefits strategies to air toxics and fine particulate emissions Stakeholder input Use BenMAP to quantify the anticipated health benefits of air quality improvements

Multi-Pollutant Stakeholder Workgroup

Gain recommendations as to the next steps Louisville can take to improve air quality AND reduce health impacts associated with air pollution exposure

Convene a **broad range of community stakeholders** to
discuss current air quality
challenges

Multi-Pollutant Stakeholder Workgroup

Area Sources

Outreach and Education

Committee Focus Areas

Health

Point Sources

Mobile Sources

Moving Forward

Voluntary Actions

Open Discussion

What other ways can we, as a community, work to reduce ozone?

This Photo by Unknown Author is licensed under CC BY-NC

Questions?

Louisville Metro Air Pollution Control District

701 W. Ormsby Ave.

Ste. 303

Louisville, Ky. 40203

(502) 574-6000

www.louisvilleky.gov/APCD

Keith H. Talley Sr., Director

Resources

Air Pollution Control District

Louisvilleky.gov/APCD

Environmental Protection Agency (EPA)

<u>Epa.gov/ground-level-ozone-</u> <u>pollution/ground-level-ozone-basics</u>

Epa.gov

Epa.gov/Region4

Department of Energy

https://www.energy.gov/energysave
r/energy-saver

Louisville Air Watch

Airqualitymap.louisvilleky.gov/

AirNow

Airnow.gov/

Kentucky Division of Air Quality

Air.ky.gov

Energy Star

https://www.energystar.gov/

Resources

KAIRE

Helptheair.org
Facebook.com/helptheair
Twitter.com/helptheair

Lawn Care for Cleaner Air

<u>Louisvilleky.gov/government/lawn-</u>care-cleaner-air

Grow More Mow Less

Louisvilleky.gov/government/air-pollution-control-district/grow-more-mow-less

Facebook.com/GrowMoreMowLess

Every Commute Counts

https://everycommutecounts.org/

